Thermoperiodic Stem Elongation Involves Transcriptional Regulation of Gibberellin Deactivation in Pea
نویسندگان
چکیده
منابع مشابه
Thermoperiodic stem elongation involves transcriptional regulation of gibberellin deactivation in pea.
The physiological basis of thermoperiodic stem elongation is as yet poorly understood. Thermoperiodic control of gibberellin (GA) metabolism has been suggested as an underlying mechanism. We have investigated the influence of different day and night temperature combinations on GA levels, and diurnal steady-state expression of genes involved in GA biosynthesis (LS, LH, NA, PSGA20ox1, and PsGA3ox...
متن کاملGibberellin-auxin interaction in pea stem elongation.
Joint application of gibberellic acid and indole-3-acetic acid to excised stem sections, terminal cuttings, and decapitated plants of a green dwarf pea results in a markedly synergistic growth response to these hormones. Synergism in green tall pea stem sections is comparatively small, although growth is kinetically indistinguishable from similarly treated dwarf sections.Gibberellin-induced gro...
متن کاملThermoperiodic growth control by gibberellin does not involve changes in photosynthetic or respiratory capacities in pea
Active gibberellin (GA(1)) is an important mediator of thermoperiodic growth in pea. Plants grown under lower day than night temperature (negative DIF) elongate less and have reduced levels of GA(1) compared with plants grown at higher day than night temperature (positive DIF). By comparing the wild type (WT) and the elongated DELLA mutant la cry(s), this study has examined the effect of impair...
متن کاملAuxin regulation of the gibberellin pathway in pea.
The auxin indole-3-acetic acid (IAA) has been shown to promote the biosynthesis of the active gibberellin (GA(1)) in shoots of pea (Pisum sativum). We used northern analysis to investigate the timing of IAA-induced changes in transcript levels of PsGA3ox1 (Mendel's LE), PsGA2ox1, PsGA2ox2, and PsGA20ox1, key genes for the later stages of GA(1) biosynthesis and metabolism in pea. Rapid (2-4 h) c...
متن کاملMechanism of gibberellin-dependent stem elongation in peas.
Stem elongation in peas (Pisum sativum L.) is under partial control by gibberellins, yet the mechanism of such control is uncertain. In this study, we examined the cellular and physical properties that govern stem elongation, to determine how gibberellins influence pea stem growth. Stem elongation of etiolated seedlings was retarded with uniconozol, a gibberellin synthesis inhibitor, and the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Plant Physiology
سال: 2005
ISSN: 1532-2548,0032-0889
DOI: 10.1104/pp.105.063149